

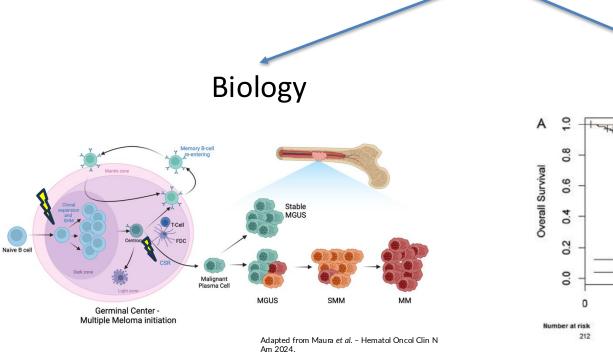
# GIORNATE EMATOLOGICHE VICENTINE

XI edizione

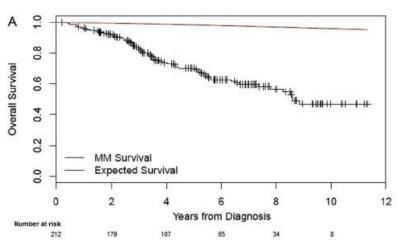
**9-10 Ottobre 2025**Palazzo Bonin Longare - Vicenza

### Come definisco il mieloma ad alto rischio nel 2025

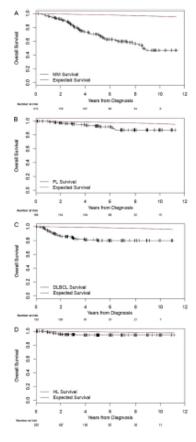
Matteo Claudio Da Vià, MD

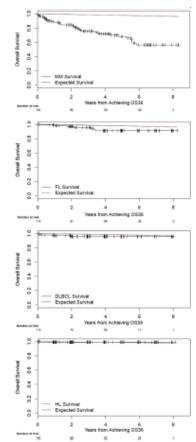

Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy

Hematology, Bone Marrow Transplant and Cellular Therapy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy

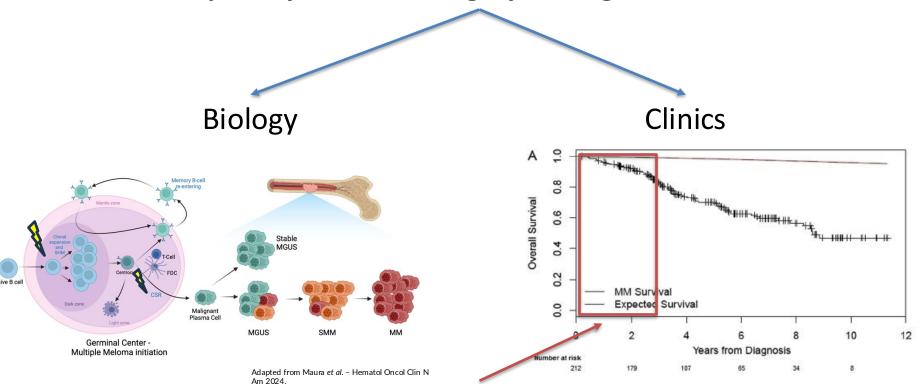

### **Disclosures of Name Surname**

| Company name      | Research<br>support | Employee | Consultant | Stockholder | Speakers<br>bureau | Advisory<br>board | Other |
|-------------------|---------------------|----------|------------|-------------|--------------------|-------------------|-------|
| Johnson & Johnson | x                   |          | х          |             | х                  | х                 |       |
| Pfizer            | x                   |          |            |             | x                  | x                 |       |
| Takeda            |                     |          |            |             |                    | x                 |       |
| GSK               |                     |          | х          |             | х                  |                   |       |
| Sanofi            |                     |          |            |             | х                  | х                 |       |
| IGI               | x                   |          | х          |             |                    |                   |       |
| Menarini          |                     |          |            |             | x                  | X                 |       |


# Mutiple Myeloma is a highly hetergenous disease






# Mutiple Myeloma is a highly hetergenous disease





# Mutiple Myeloma is a highly hetergenous disease



The definition of high-risk/UltraHR patients still represents unmet clinical need

# **Broad definition of HR Multiple Myeloma**

| Prognostic factors                                                   |                                    |                           |                     |  |  |
|----------------------------------------------------------------------|------------------------------------|---------------------------|---------------------|--|--|
| Patient-related Disease burden-related Disease biology-related Thera |                                    |                           |                     |  |  |
| Age                                                                  | High B <sub>2</sub> microglobulin* | Cytogenetic abnormalities | Quality of response |  |  |
| Performance status                                                   | Low albumin*                       | GEP                       | Early relapse       |  |  |
| Comorbidities                                                        | Renal impairment                   | Circulating PCs           |                     |  |  |
| LDH above ULN                                                        |                                    | EMD                       |                     |  |  |
|                                                                      |                                    | High proliferation rate   |                     |  |  |

# **Broad definition of HR Multiple Myeloma**



|                                      | Serum features                                              | Genomic<br>features                                                                                                                    | Proposed clinical<br>definition of<br>high risk: | % defined<br>as<br>high risk | Definition of<br>high risk                                                                                                | Outcomes based<br>on risk                                                                                              | Additional important notes                                                                                                                                                                                                                                                  |
|--------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISS [3]                              | Serum β2-<br>microglobu <b>l</b> in<br>Serum albumin        | None                                                                                                                                   | NA*                                              | 33.6%                        | ISS stage III: Serum<br>β2-microglobulin<br>>5.5 mg/L                                                                     | Median OS (months) • Stage II: 62 • Stage III: 45 • Stage IIII: 29                                                     | B2-microglobulin: indicative of<br>increased tumor burden and<br>declining renal function<br>Serum albumin: driven by<br>inflammatory cytokines such as<br>IL-6 and the bone marrow<br>microenvironment                                                                     |
| R-ISS [2]                            | LDH<br>Serum β2-<br>microglobu <b>l</b> in<br>Serum albumin | del(17p) <sup>b</sup><br>t(4;14)<br>t(14;16)                                                                                           | NA <sup>c</sup>                                  | 10%                          | ISS stage III and<br>either high-risk CA<br>by iFISH or high LDH                                                          | 5-year OS:<br>• Stage 1: 82%<br>• Stage 2: 62%<br>• Stage 3: 40%                                                       | Stage 3 patients have a median<br>PFS of 29 months and median<br>OS of 37 months [54]                                                                                                                                                                                       |
| IMWG [5]                             | Serum β2-<br>microglobu <b>l</b> in<br>Serum albumin        | del(17p) <sup>b</sup><br>t(4;14)<br>+1q21                                                                                              | Median OS<br><2 years                            | 20%                          | ISS II/II and t(4;14) or<br>17p13 del by iFISH                                                                            | Median OS: • Low risk: >10 years • Standard risk: 7 years • High risk: 2 years                                         | High-risk group with a 4-year<br>PFS of 12% and OS of just 35%<br>Low-risk group consists of ISS I/<br>II and absence of t(4;14), 17p13<br>del or +1q21 and age<br><55 years                                                                                                |
| mSMART [55]                          | LDH<br>Serum β2-<br>microglobulin<br>Serum albumin          | Ploidy status<br>t(4;14) t(14;16) t<br>(14;20)<br>t(11;14)<br>t(6/14)<br>del(17p) and<br>p53 deletion<br>deletion 13<br>gain 1q<br>GEP | NA <sup>d</sup>                                  | 20%                          | High-risk genetic<br>Abnormalities<br>• t(14;16); t(14;20);<br>• Del17p or p53<br>mutation<br>GEP: high-risk<br>signature | Median OS:  High risk: 3 years  Intermediate risk:  4–5 years  Standard risk:  8–10 years                              | Trisomies may ameliorate<br>high-risk genetic abnormalities<br>High plasma cell 5-phase also<br>defines high risk: cutoffs vary<br>5-Standard risk includes all<br>others including trisomies, t<br>(11,14), and t(6,14)<br>(1(4,14): re-Classified as<br>intermediate risk |
| EMC92/<br>SYK92 –MMprofiler<br>[30]  | None                                                        | High-risk<br>survival<br>signature of 92<br>genes <sup>e</sup>                                                                         | Median OS<br><2 years                            | 18-20%                       | Two-tiered system of<br>high and<br>standard risk                                                                         | Reduced OS with HR<br>of 2.06 to 5.23 in<br>validation cohorts<br>amongst the TT2, TT3,<br>APEX, and MRC-IX<br>studies | In multivariate analyses, the<br>signature was proven to be<br>independent of the currently<br>used prognostic factors                                                                                                                                                      |
| UAMS GEP70 or MyPRS<br>[28]          | None                                                        | High-risk<br>survival<br>signature of 70<br>genes <sup>o</sup>                                                                         | "early disease-<br>related death"                | 13-14%                       | Two-tiered system of<br>high and<br>standard risk                                                                         | HR for high v standardrisk GEP: • EFS: 3.41 ( <i>P</i> = 0.002) • OS: 4.75 ( <i>P</i> <0.001)                          | Standard-risk patients with a<br>5-year continuous complete<br>remission of 60% vs. 3-year rate<br>of only 20% in those with a<br>high-risk<br>"Early disease-related death"<br>definition not clear in the<br>primary literature                                           |
| CoMMpass [19]                        | LDH                                                         | fTP53 mutation<br>λ-chain<br>translocation<br>IGLL5 mutation                                                                           | Time to<br>progression (TTP)<br>of < 18 months   | 20.6%                        | TTP < 18 months:<br>high-risk<br>TTP >18 months:<br>low risk                                                              | Median OS in months: • High risk: 32.8 • ISS III: 54 • Baseline high-risk CA: 65                                       | TTP 18-month cutoff chosen<br>because time to ASCT was<br>~6 months and many MM<br>studies define early PD as<br>relapse within 12 months<br>from ASCT                                                                                                                      |
|                                      | Serum features                                              | Genomic<br>features                                                                                                                    | Proposed clinical<br>definition of<br>high risk: | % defined<br>as<br>high risk | Definition of<br>high risk                                                                                                | Outcomes based<br>on risk                                                                                              | Additional important notes                                                                                                                                                                                                                                                  |
| Myeloma Genome<br>Project [6, 17]    | Serum β2-<br>microglobulin<br>Serum albumin                 | TP53<br>inactivation<br>+1q amp                                                                                                        | NA <sup>9</sup>                                  | 6.1%                         | Biallelic TP53<br>inactivation or amp<br>of CKS1B (1q21) on<br>the background of<br>ISS stage III                         | High risk:  • Median PFS: 15.4 months  • Median OS: 20.7 months                                                        | 1q amplification considered ≥<br>4 copies<br>LDH values were not<br>universally available<br>preventing the calculation of<br>R-ISS thus ISS and IMWG risk<br>criteria were used                                                                                            |
| Cytogenetics<br>Prognostic Index [9] | None                                                        | del(17p) t(4;14)<br>del(1p32)<br>1q21 gain<br>trisomies 3,<br>5, and 21                                                                | NA                                               | 11–18%                       | Prognostic Index >1<br>defined high risk <sup>h</sup>                                                                     | 5-year survival: • High risk: <50% • Int risk: 50–75% • Low risk: >75%                                                 | The main objective was to<br>develop and validate a<br>prognostic model based on the<br>seven cytogenetic<br>abnormalities                                                                                                                                                  |

Hagen et al, Blood Canc J. 2022

# **Broad definition of HR Multiple Myeloma**



|                                      | Serum features                                       | Genomic<br>features                                                                                                                    | Proposed dinical<br>definition of                | % defined<br>as<br>high rick | Definition of<br>high risk                                                                                                | Outcomes based<br>on risk                                                                                              | Additional important notes                                                                                                                                                                                                                                                 |
|--------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [SS [3]                              | Serum β2-<br>microglobu <b>l</b> in<br>Serum albumin | None                                                                                                                                   | NA®                                              | 33.6%                        | ISS stage III: Serum<br>β2-microglobulin<br>>5.5 mg/L                                                                     | Median OS (months) • Stage I: 62 • Stage II: 45 • Stage III: 29                                                        | B2-microglobulin: indicative of<br>increased tumor burden and<br>declining renal function<br>Serum albumin: driven by<br>inflammatory cytokines such as<br>IL-6 and the bone marrow<br>microenvironment                                                                    |
| R-ISS [2]                            | LDH<br>Serum β2-<br>microglobulin<br>Serum albumin   | del(17p) <sup>b</sup><br>t(4;14)<br>t(14;16)                                                                                           | NA°                                              | 10%                          | ISS stage III and<br>either high-risk CA<br>by iFISH or high LDH                                                          | 5-year OS: • Stage 1: 82% • Stage 2: 62% • Stage 3: 40%                                                                | Stage 3 patients have a median<br>PFS of 29 months and median<br>OS of 37 months [54]                                                                                                                                                                                      |
| IMWG [5]                             | Serum β2-<br>microglobulin<br>Serum albumin          | del(17p) <sup>b</sup><br>t(4;14)<br>+1q21                                                                                              | Median OS<br><2 years                            | 20%                          | ISS II/II and t(4;14) or<br>17p13 del by iFISH                                                                            | Median OS: • Low risk: >10 years • Standard risk: 7 years • High risk: 2 years                                         | High-risk group with a 4-year<br>PFS of 12% and OS of just 35%<br>Low-risk group consists of ISS I<br>II and absence of t(4;14), 17p13<br>del or +1q21 and age<br><55 years                                                                                                |
| mSMART [55]                          | LDH<br>Serum β2-<br>microglobulin<br>Serum albumin   | Ploidy status<br>t(4;14) t(14;16) t<br>(14;20)<br>t(11;14)<br>t(6/14)<br>del(17p) and<br>p53 deletion<br>deletion 13<br>gain 1q<br>GEP | NA <sup>d</sup>                                  | 20%                          | High-risk genetic<br>Abnormalities<br>• t(14;16); t(14;20);<br>• Del17p or p53<br>mutation<br>GEP: high-risk<br>signature | Median OS:  • High risk: 3 years  • Intermediate risk:  4–5 years  • Standard risk:  8–10 years                        | Trisomies may ameliorate<br>high-risk genetic abnormalities<br>High plasma cell 5-phase also<br>defines high risk: cutoffs vary<br>5-standard risk includes all<br>others including trisomies, t<br>(11;14), and t(6;14)<br>t (4;14): e-classified as<br>intermediate risk |
| EMC92/<br>SYK92 –MMprofiler<br>[30]  | None                                                 | High-risk<br>survival<br>signature of 92<br>genes <sup>e</sup>                                                                         | Median OS<br><2 years                            | 18-20%                       | Two-tiered system of<br>high and<br>standard risk                                                                         | Reduced OS with HR<br>of 2.06 to 5.23 in<br>validation cohorts<br>amongst the TT2, TT3,<br>APEX, and MRC-IX<br>studies | In multivariate analyses, the<br>signature was proven to be<br>independent of the currently<br>used prognostic factors                                                                                                                                                     |
| UAMS GEP70 or MyPRS<br>[28]          | None                                                 | High-risk<br>survival<br>signature of 70<br>genes <sup>e</sup>                                                                         | "early disease-<br>related death"                | 13–14%                       | Two-tiered system of<br>high and<br>standard risk                                                                         | HR for high v standard-<br>risk GEP: • EFS: 3.41 ( <i>P</i> = 0.002) • OS: 4.75 ( <i>P</i> <0.001)                     | Standard-risk patients with a<br>5-year continuous complete<br>remission of 60% vs. 3-year rate<br>of only 20% in those with a<br>high-risk<br>"Early disease-related death"<br>definition not clear in the<br>primary literature                                          |
| CoMMpass [19]                        | LDH                                                  | <sup>f</sup> TP53 mutation<br>λ-chain<br>translocation<br>IGLL5 mutation                                                               | Time to<br>progression (TTP)<br>of < 18 months   | 20.6%                        | TTP < 18 months:<br>high-risk<br>TTP >18 months:<br>low risk                                                              | Median OS in months: • High risk: 32.8 • ISS IIE 54 • Baseline high-risk CA: 65                                        | TTP 18-month cutoff chosen<br>because time to ASCT was<br>~6 months and many MM<br>studies define early PD as<br>relapse within 12 months<br>from ASCT                                                                                                                     |
|                                      | Serum features                                       | Genomic<br>features                                                                                                                    | Proposed clinical<br>definition of<br>high risk: | % defined<br>as<br>high risk | Definition of<br>high risk                                                                                                | Outcomes based<br>on risk                                                                                              | Additional important notes                                                                                                                                                                                                                                                 |
| Myeloma Genome<br>Project [6, 17]    | Serum β2-<br>microglobulin<br>Serum albumin          | TP53<br>inactivation<br>+1q amp                                                                                                        | NA <sup>a</sup>                                  | 6.1%                         | Biallelic TP53<br>inactivation or amp<br>of CKS1B (1q21) on<br>the background of<br>ISS stage III                         | High risk: • Median PFS: 15.4 months • Median OS: 20.7 months                                                          | 1q amplification considered ≥<br>4 copies<br>LDH values were not<br>universally available<br>preventing the calculation of<br>R-ISS thus ISS and IMWG risk<br>criteria were used                                                                                           |
| Cytogenetics<br>Prognostic Index [9] | None                                                 | del(17p) t(4;14)<br>del(1p32)<br>1q21 gain<br>trisomies 3,<br>5, and 21                                                                | NA                                               | 11–18%                       | Prognostic Index >1<br>defined high risk <sup>h</sup>                                                                     | 5-year survival:  • High risk: <50%  • Int risk: 50–75%  • Low risk: >75%                                              | The main objective was to<br>develop and validate a<br>prognostic model based on the<br>seven cytogenetic<br>abnormalities                                                                                                                                                 |

Hagen et al, Blood Canc J. 2022

### R2-ISS

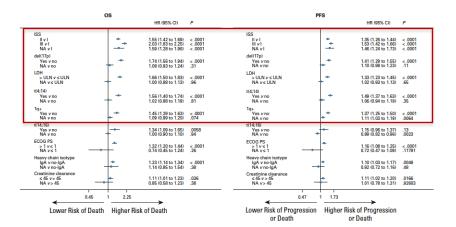
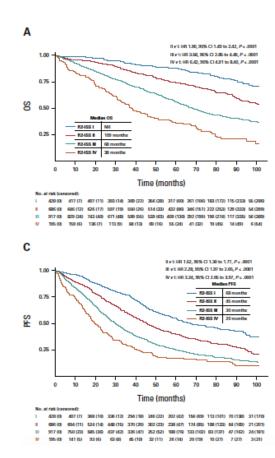
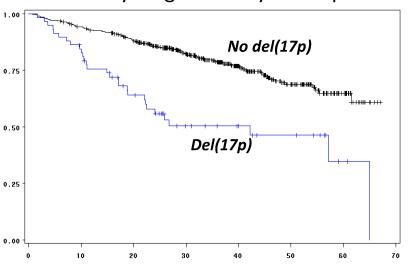
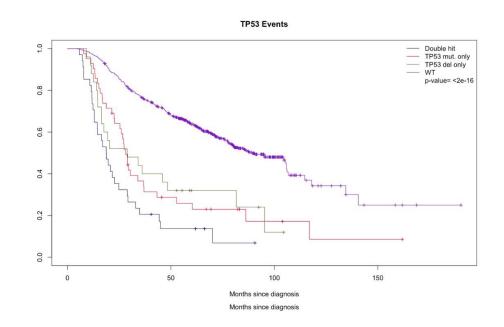




TABLE 2. R2-ISS Score Definition on the Basis of the Evaluable Patients Included in the Training Set (n = 2,226)

| Risk Feature               | OS HR (95% CI)      | PFS HR (95% CI)     | Score Value <sup>a</sup> |  |
|----------------------------|---------------------|---------------------|--------------------------|--|
| ISS II 1.75 (1.49 to 2.05) |                     | 1.43 (1.28 to 1.61) | 1                        |  |
| ISS III                    | 2.53 (2.13 to 3.01) | 1.76 (1.54 to 2.01) | 1.5                      |  |
| del(17p)                   | 1.82 (1.53 to 2.17) | 1.43 (1.23 to 1.65) | 1                        |  |
| LDH high                   | 1.60 (1.36 to 1.88) | 1.37 (1.20 to 1.57) | 1                        |  |
| t(4;14)                    | 1.53 (1.29 to 1.81) | 1.40 (1.21 to 1.62) | 1                        |  |
| 1a+                        | 1.47 (1.29 to 1.68) | 1.33 (1.20 to 1.48) | 0.5                      |  |


| Group                   | No. (%)  | Total Additive Score |
|-------------------------|----------|----------------------|
| Low (I)                 | 428 (19) | 0                    |
| Low-intermediate (II)   | 686 (31) | 0.5-1                |
| Intermediate-high (III) | 917 (41) | 1.5-2.5              |
| High (IV)               | 195 (9)  | 3-5                  |

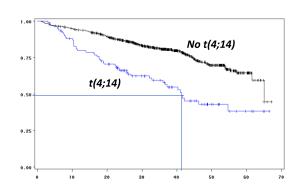



# Unmet need: a consensus defition of HR myeloma

## **Deletion 17p and TP53 mutations**

8% of newly diagnosed myeloma patients



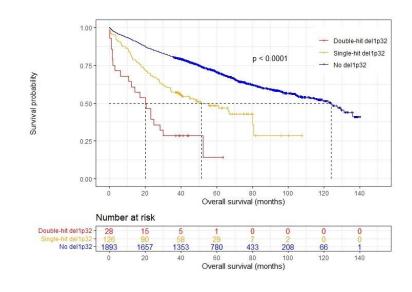



## **Deletion 17p and TP53 mutations**

- Incidence approx 8% each
- Isolated del17p performs poorly. In multi-variant analysis definitely an independent variable
  - Using iFISH there is a dosage response in outcome based on clonal fraction.
  - Greatest effect seen over 60% but sill significance over 20%
  - Most trials do not report the cut off values this should be mandatory moving forward
  - Moving forward clonal fraction should be >20%
- Biallelic events perform very poorly (either deletion and mutation or both alleles deleted)
- Mutation alone also performs similar to isolated del17p
- Mutation should be included in all trials moving forward
- In R-ISS del17p is not automatically Stage III this needs to be updated
- At relapse
  - · Generally events are enriched
  - Prognosis remains poor

t(4;14), t(14;16), t(14;20)

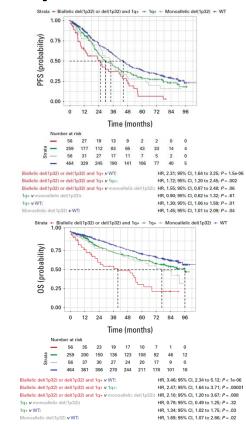
12-15% of patients



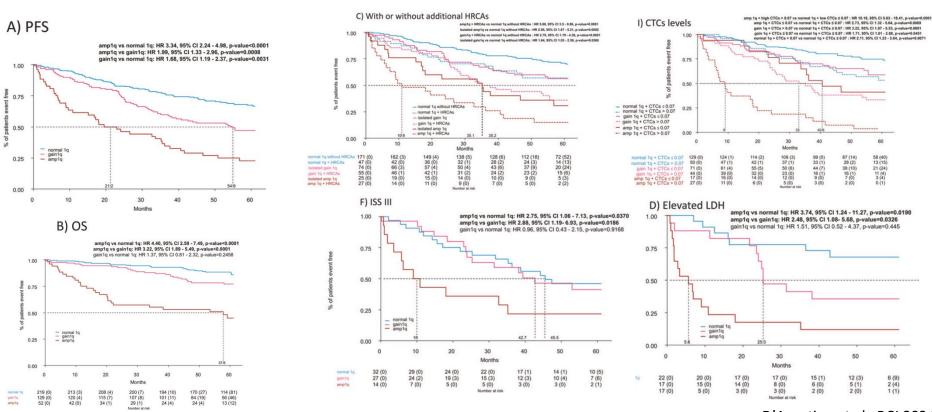

Avet-Loiseau H et al, Blood 2007

- Biology driven by the translocation is important
- Data suggests that t(4;14) on its own is not prognostic
  - About 60% of t(4;14) have another lesion (17p, 1q and 1p) and these perform poorly
  - Preliminary data suggesting the breakpoint maybe important and potentially related to the NSD2 isoform (short isoform performs worse)
- MAF and MAFB are rare -4% overall
  - High occurrence of with other abnormalities (eg 1q and 17p) and APOBEC

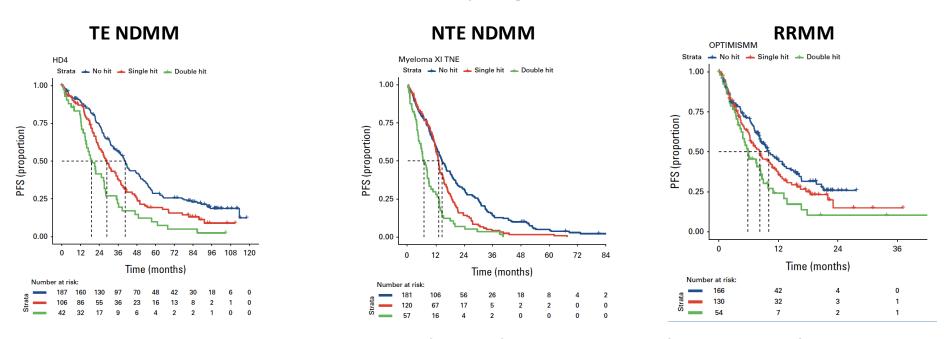
# Deletion(1p32)


- Incidence approx 5-15% NDMM and 20% of these have bi-allelic deletion
- Cut off 10-30%
- Prognostic in many data sets. In some, only prognostic if mono-allelic is combined with other factors e.g., 1q
- Biallellic deletion definitely poor risk (CDKN2A) – but only picked up with SNP array or NGS not FISH




Schavgoulidze A, Blood 2022

# Gain / Amplification 1q


- Incidence approx 30% NDMM
- Although patients with a 1q gain have a slightly inferior outcome in most studies, its major effect is in combination with other abnormalities.
- In some studies Amp1q alone has emerged as a high-risk abnormality and is often a sign of complex abnormalities. However, this is not consistent across studies and requires further validation.
- Therefore gain1q and amp1q is considered high-risk if in association with another abnormality



# **Gain / Amplification 1q**



# Double/triple hit entities represents a very HR MM population with dimsal prognosis



Curves separation was consistent in studies with treatment combinations with Pis, IMIDs and anti-CD38 monoclonal antibodies

\*\*Raiser et al., JCO, 2025\*\*

# Final consensus HR classification

- Del(17p) >20%
- TP53 mutation
- Biallelic del(1p32)
- t(4;14) or t(14;16) or t(14;20) <u>AND</u> either 1q gain/amp or monoallelic del1p32
- 1q gain/amp AND monoallelic del1p32

monoallelic del1p32

# Final consensus HR classification



- t(4;14) or t(14;16) or t(14;20) AND either 1q gain/amp or

- 1q gain/amp AND monoallelic del1p32

TOT 100% HR patients

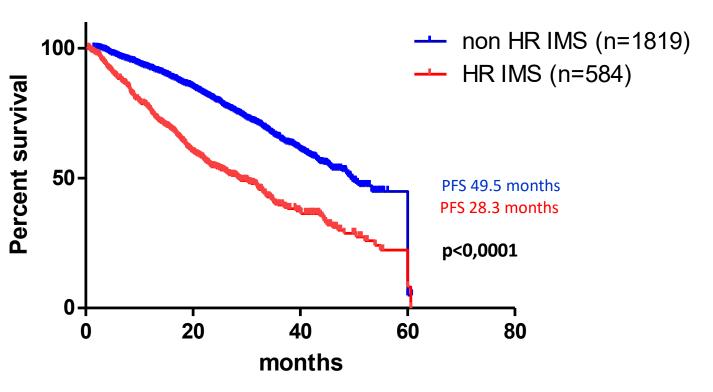
~45%

Avet-Loiseau et al., JCO, 2025

### Consensus HR classification validation

#### 5602 NDMM with NGS

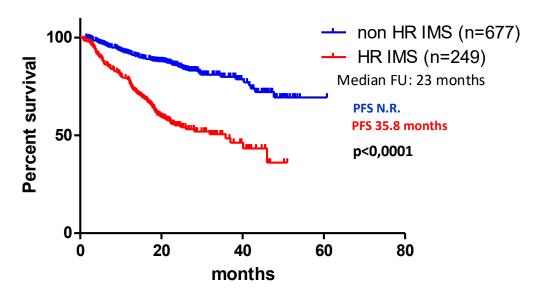
- 1250 HR IMS 22.3%
- 1117 HR IMWG 19.9%


|             | Non HR IMS | HR IMS     |      |
|-------------|------------|------------|------|
| Non HR IMWG | 4161       | 324 (5.8%) | 4485 |
| HR IMWG     | 19 (3.4%)  | 925        | 1117 |
|             | 4352       | 1250       | 5602 |

Conclusion: 515 patients (9.2%) reclassified

- 5.8% non HR IMWG become HR IMS
- 3.4% HR IMWG become non HR IMS

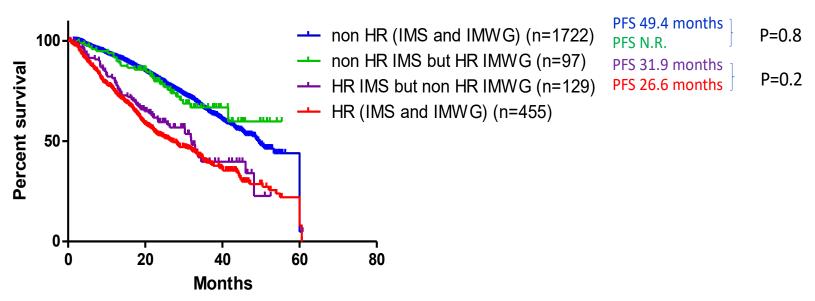
### GIORNATE EMATOLOGICHE VICENTINE XI edizione


### PFS according to IMS definition



(Median FU: 31.7 months

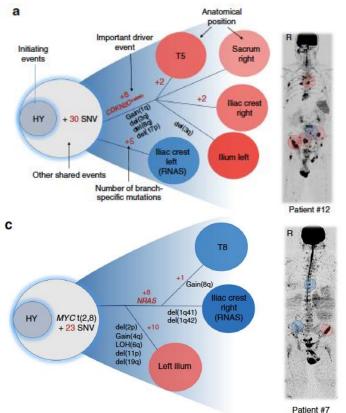
### Consensus HR classification validation

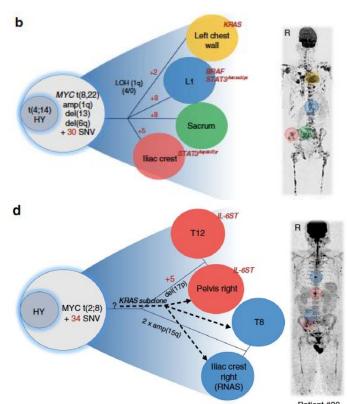

### PFS according to IMS in patients treated by anti-CD38



### GIORNATE EMATOLOGICHE VICENTINE

### XI edizione


### PFS according to IMS and IMWG definitions




# Discussion points

- Not a definitive risk stratification: role of GEP, CTCs, EMD etc
- Not a molecular classification
- Likely unable to address all functional high-risk cases
- Role of beta-2 microglobulin still debatable (with normal kidney function)
- Will likely require the wide adoption of NGS
- A starting point needed to address HR in ad-hoc clinical trials, perform meta-analyses etc

# Multiple Myeloma is a «patchy disease»





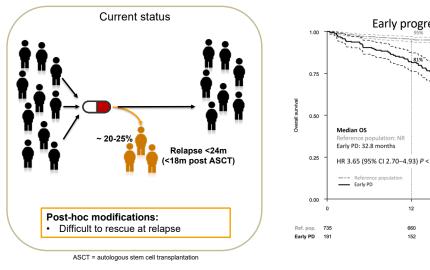
# For a better definition of HRMM we need to integrate different strategies:

Intercept functional high risks

Possible Biomarkers able to resolve spatial heterogeneity

Static to dynamic evaluation

# For a better definition of HRMM we need to integrate different strategies:


Intercept functional high risks

Possible Biomarkers able to resolve spatial heterogeneity

Static to dynamic evaluation

# **Functional High-risk MM patients**

Fact: 20-25% of MM patients have poor outcome even in the era of novel treatments



Courtesy of M. Kaiser

D'Agostino et al., Clin Can Res 2020

FHR patients are those exhibiting early progressive disease be best defined as relapse within 18 months of initiation of any first-line therapy.

A refined and integrated molecualr assessment could identify FHR patients

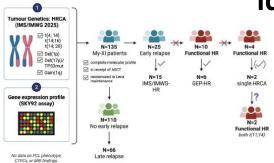
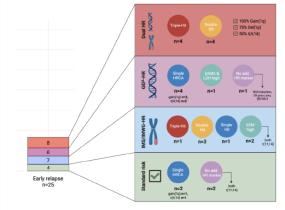
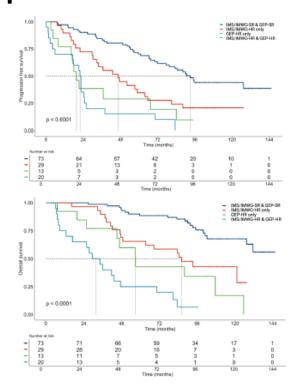
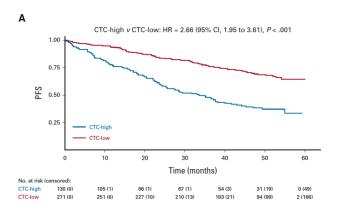
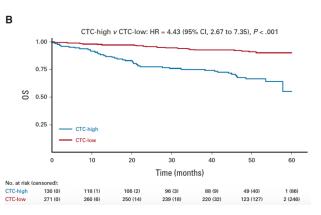





Figure 1B





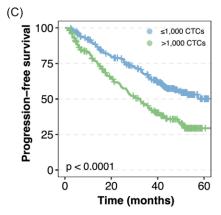

# For a better definition of HRMM we need to integrate different strategies:

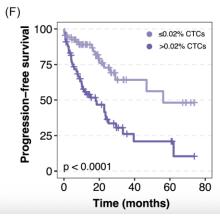

Intercept functional high risks

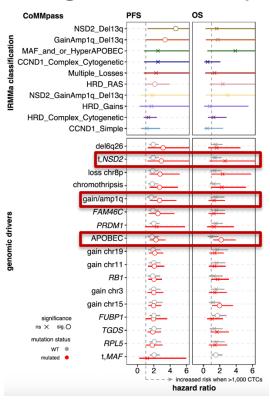
Possible Biomarkers able to resolve spatial heterogeneity

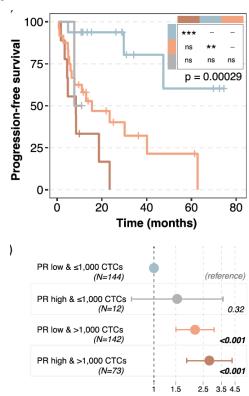
Static to dynamic evaluation

# Circulating tumor cells (CTCs)



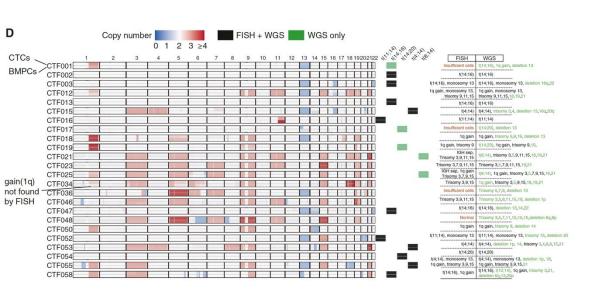





|                                        | PFS                 |        | OS                  |        |  |
|----------------------------------------|---------------------|--------|---------------------|--------|--|
| Covariate                              | HR (95% CI)         | P      | HR (95% CI)         | P      |  |
| CTC cutoff                             |                     |        |                     |        |  |
| CTC-high v CTC-low                     | 2.11 (1.49 to 2.97) | < .001 | 2.61 (1.49 to 4.56) | < .001 |  |
| ISS                                    |                     |        |                     |        |  |
| II/III <i>v</i> I                      | 1.04 (0.74 to 1.46) | .812   | 1.08 (0.62 to 1.87) | .792   |  |
| LDH                                    |                     |        |                     |        |  |
| High v low                             | 2.22 (1.48 to 3.33) | < .001 | 4.77 (2.77 to 8.19) | < .001 |  |
| CA                                     |                     |        |                     |        |  |
| High risk <sup>a</sup> v standard risk | 1.33 (0.93 to 1.90) | .123   | 2.53 (1.43 to 4.48) | .001   |  |
| amp(1q)                                |                     |        |                     |        |  |
| Yes v no                               | 2.03 (1.42 to 2.91) | < .001 | 1.94 (1.06 to 3.54) | .030   |  |
| Depth of response                      |                     |        |                     |        |  |
| MRD NEG v POS⁵                         | 0.53 (0.37 to 0.75) | < .001 | 0.41 (0.23 to 0.73) | .002   |  |

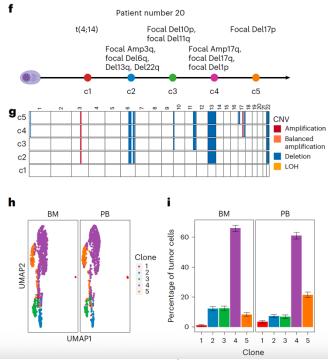

Bertamini et al., JCO 2022 Garces et al., Hemasphere, 2025

# Circulating tumor cells (CTCs)








Garces et al., Hemasphere, 2025

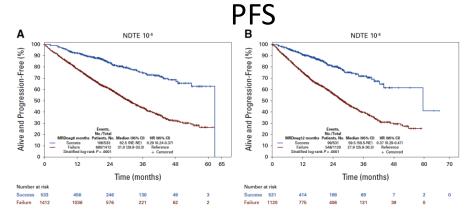
# Sequencing approches of CTCs could help to better define the ridk category of MM patients and may resolve spatial heterogeneity

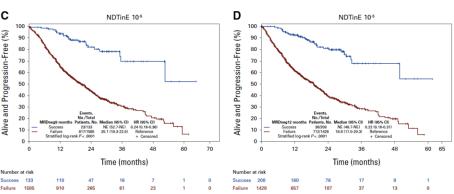


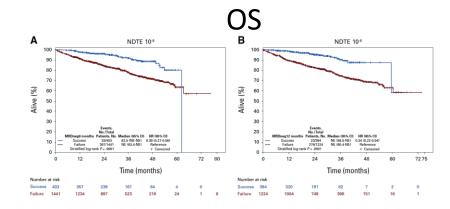
Molecular approches identifies high risk clones

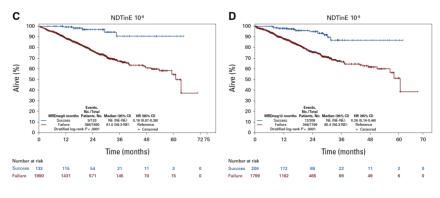


Dutta et al., Cancer Discovery 2022 Lightbody et al., Nat Cancer, 2025

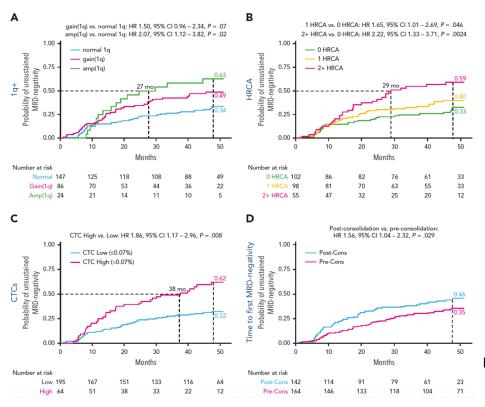

# For a better definition of HRMM we need to integrate different strategies:

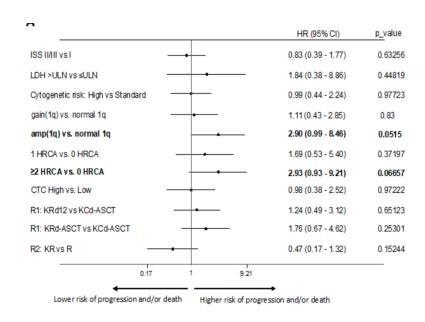

Intercept functional high risks


Possible Biomarkers able to resolve spatial heterogeneity


Static to dynamic evaluation

# MRD negativity as surrogate of survival








# Sustained MRD negativity and risk factors fo MRD resurgence





Patients with HRCA, high CTCs, amp1q are HR of MRD resurgence

### GIORNATE EMATOLOGICHE VICENTINE XI edizione

### **Conclusions:**

- New IMS/IMWG consensus is a strong backbone for HR definition in Multiple Myeloma
- IMS/IMWG consensus will serve as «Trojan horse» to introduce genomics in MM clinical practice
- In the next years IMS/IMWG consensus need to be implemented for:
   Early interception of FHR

CTCs
Spatial heterogeity

- The static baseline evaluation need to be integrated with a longitudinal dynamic approach based on MRD assessment (NGF or NGS) for MRD-driven treatment strategies
- MRD-driven clinical trials will be the game changer for the new clinical practice in the next years

### GIORNATE EMATOLOGICHE VICENTINE

XI edizione

### Head: Prof. Francesco Passamonti

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico



### Clinical Unit – Myeloma group

Loredana Pettine Claudio De Magistris Niccolò Bolli



UNIVERSITÀ **DEGLI STUDI** DI MILANO

**University of Catania** 

University of Palermo

University of Queensland

Alessandra Romano





#### Collaborators:

MSKCC

Francesco Maura Bachisio Ziccheddu

#### University of Calgary

Paola Neri Noemie Leblay Nizar Bahlis

#### **University of Pavia** Alessandra Balduini

Christian Di Buduo

### University of Bari

Roberto Ria Antonio G. Solimando Vanessa De Santis

#### DFCI - Harvard Medical School

Nikhil Munshi Giada Bianchi Mehmet Samur

Tom Cupedo

Erasmus MC - Rotterdam

#### **IFOM**

Claudio Tripodo Stefano Casola

University of Helsinki

Sara Gandolfi

Ospedale San Raffaele

Antonio Citro Matteo Bellone

#### Funding:









Cirino Botta

Kelvin Toung





### **Bolli Lab – Hematology Unit Lab**

Francesca Lazzaroni

Marta Lionetti

Akihiro Maeda

Margherita Scopetti

Filippo Viviani

**Emanuele Calvi** 

Juan Carlos Entizne

Elisa Taiana

Valentina Traini

Giuseppina Fabbiano

Ilaria Silvestris

Domenica Ronchetti

Emanuela Zappa

Flena Benzoni

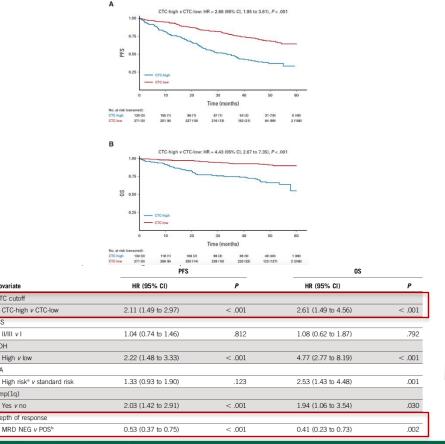
Marzia Barbieri

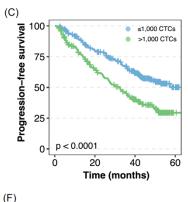
Sonia Fabris

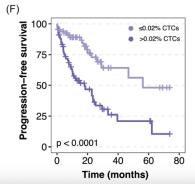
Stefania Pioggia

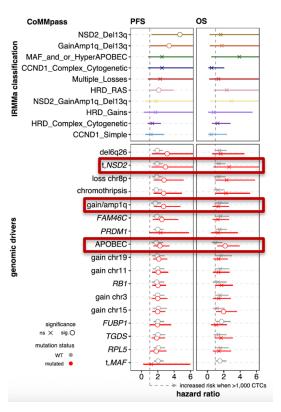
Silvia Lonati

Giancarlo Castellano


Giulia Biancon


Johnson&Johnson Innovative Medicine


### GIORNATE EMATOLOGICHE VICENTINE XI e


XI edizione

# Circulating tumor cells (CTCs)





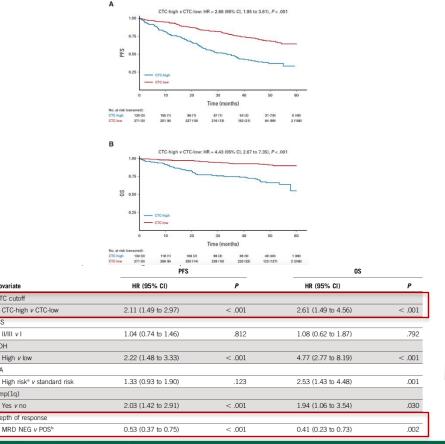


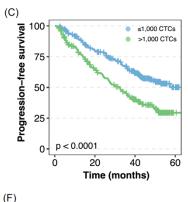


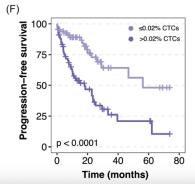
Bertamini et al., JCO 2022 Garces et al., Hemasphere, 2025

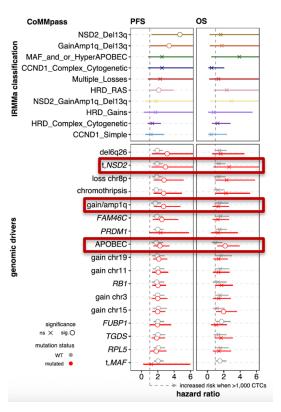
Covariate

CTC cutoff


II/III v I


amp(1q)


High v low


Depth of response

# Circulating tumor cells (CTCs)









Bertamini et al., JCO 2022 Garces et al., Hemasphere, 2025

Covariate

CTC cutoff

II/III v I

amp(1q)

High v low

Depth of response